IPCP webinar, for a UNEP project, on persistent organic pollutants (POPs) and POP candidates in plastics.

Bioanalysis of POPs and EDC in plastic

RESPONSIBLE: Dr. Peter A. Behnisch

SAFE Design TOXLC TOUS Non-animal Reproductive toxicology estrogens BisphenolAfree Plastic additives Healthy DISTUP PFAS Dioxins PCBs Green Toxicology HTPS screening Automated & Robotic EATS Paraben free Mixture toxicity

RDS

- 1 Public Concern about Safety of Plastic
- 2 Plastics and chemicals of concern
- 3 Known vs unknown chemicals (IAS & NIAS)
- 4 Toxicological profiling of plastic additives
- 5 Industrial innovation & developments
- 6 EU projects for safer plastic
- 7 First results of plastic pellets from Nigeria

Public concern about safety of plastic

Researchers tested 19 baby bottles purchased in nine

The Challenges in Plastic Safety

Plastics and Chemical of Concern

Phthalates, mineral oils, PFAS, EDCs, PAAs, PFCs, photoinitiators, BPA...

Complex mixtures of hormone active substances in plastics

Additives (e.g. plasticizers, UV-blockers)

•By-Products of the polymerization process (e.g. styrene dimers)

Monomers (e.g. Bisphenol A, Bisphenol S, phthalates...)

- Printing color components (e.g. photo initiators)
- Contaminants

Known vs Unknown Chemicals - Urgent steps needed...

Muncke et al. Environmental Health (2020) 19:25 https://doi.org/10.1186/s12940-020-0572-5

COMMENTARY

Impacts of food contact chemicals on human health: a consensus statement

Jane Muncke^{1*}, Anna-Maria Andersson², Thomas Backhaus³, Justin M. Boucher⁴, Bethanie Carney Almroth³, Arturo Castillo Castillo⁵, Jonathan Chevrier⁶, Barbara A. Demeneix⁷, Jorge A. Emmanuel⁸, Jean-Baptiste Fini⁷, David Gee⁹, Birgit Geueke¹, Ksenia Groh¹, Jerrold J. Heindel¹⁰, Jane Houlihan¹¹, Christopher D. Kassotis¹², Carol F. Kwiatkowski¹³, Lisa Y. Lefferts¹⁴, Maricel V. Maffini¹⁵, Olwenn V. Martin¹⁶, John Peterson Myers^{17,18}, Angel Nadal¹⁹, Cristina Nerin²⁰, Katherine E. Pelch¹³, Seth Rojello Fernández²¹, Robert M. Sargis²², Ana M. Soto²³, Leonardo Trasande²⁴, Laura N. Vandenberg²⁵, Martin Wagner²⁶, Changqing Wu²⁷, R. Thomas Zoeller²⁸ and Martin Scheringer^{4,29}

Environmental Health

Open Access

D

- Toxicity and exposure information is available only for few of the IAS/NIAS
- Risk assessment of unknown chemicals is not possible under the current regulatory approach
- Modernize tiered approach for screening and prioritization
- Addressing mixture toxicity
- Modernizing risk assessment by including endocrine disruption

OECD Strategy for Endocrine Disrupting Chemicals & EATS CALUX bioassays

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1 Sorting & prioritization based upon existing information	 Physical & chemical properties, e.g., MW, reactivity, volatility, biodegrad Human & environmental exposure, e.g., production volume, release, use Hazard, e.g., available toxicological data 	Level 2	•ER, AR, TR receptor binding affinity	•High Through
Level 2 In vitro assays providing mechanistic data	 •ER, AR, TR receptor binding affinity •High Through Put Pres •Transcriptional activation •Aromatase & Steroidogenesis <i>in vitro</i> •Fish hepatocyte VTG a •Aryl hydrocarbon receptor recognition/binding •QSARs; Others (as app 	In vitro assays providing mechanistic data	Transcriptional activation Aromatase & Steroidogenesis in vitro Arol bydrocarbon recentor recognition/binding	•Thyroid function •Fish hepatocyte
Level 3 In vivo assays providing data about single endocrine Mechanisms and effects	Uterotrophic Assay (estrogenic related) Hershberger Assay (androgenic related) Non-receptor mediated hormone function State of the		Arythydrocarbon receptor recognition/onraing	
Level 4 In vivo assays providing data about multiple endocrine mechanisms and effects	•Enhanced OECD 407 (endpoints based on endocrine mechanisms) •Male and female pubertal assays •Adult intact male assay	ER: (anti)Estrogens: El AR: (anti)Androgens: TB: Thyroid interferer	Ralpha CALUX (OECD TG455) AR CALUX (OECD TG458) See: TR and TTR, CALUX (TG in prepar	ation)
Level 5 In vivo assays providing data on effects from endocrine & other mechanisms	•1-generation assay (TG415 enhanced) •Partial and full life cycle assay •2-generation assay (TG416 enhanced) birds, amphibians & inverteb •Reproductive screening (TG421 enhanced) (development & reproduction •Combined 28 day/reproduction screening test (TG 422 enhanced) (TG 422 enhanced)	S: H295R steroidogen	esis (OECD 456)	ationy

Bioanalysis CALUX for toxic effects for all kinds of pollutants

Full automated CALUX cell & sampling handling

40 samples/hrs

for

- a) Seeding cells in 96 well plates and
- b) Pipette samples

Full automated Luciferase analysis via Luminometer combined with autosampler

Bioanalysis CALUX:

40 samples/hr for the quantitative analysis of the total amount of pollutant (e.g. hormones, PFAS, dioxins, PAHs) in the sample

The real toxicity/mode of action of the Dirty Dozen POPs & others

In vitro toxicity CALUX profiling

ISO 19040-3: Hormone-like activities of plastic additives by ER CALUX

Water quality — Determination of the estrogenic potential of water and waste water — Part 3: In vitro human cellbased reporter gene assay (ISO 19040-3:2018)

Verbindung	U2OS-ERα	Literatur	Τ47Dαβ	Literatur
17β-Estradiol	1		1	
17a-Ethinylestradiol	1,3 bis 1,5	[10] [11] [25]	1,2	[12] [14] [15]
17α-Estradiol	0,1	[10] [11] [16]	0,016	[12] [14] [15]
Estron	0,02	[10] [11] [16]	0,056	[12] [14] [15]
4-Nonylphenol	5,9E-04	[10] [11]	2,3E-05	[12] [14] [15]
Dimethylphtalat			1,1E-05	[12] [14] [15]
Genistein	1,1E-04	[11]	6,0E-05	[12] [14]
o,p-DDT	1,9E-05	[11]	9,1E-06	[12] [14]
Methoxychlor	1,8E-06	[11]	1,0E-06	[12] [14]
Bisphenol A			7,8E-06	[12] [14] [15]
Nonylphenolethoxylat			3,8E-06	[12] [14] [15]
4-Octylphenol			1,4E-06	[12] [14] [15]
Diethylphtalat			3,2E-08	[12] [14] [15]
Di-n-butylphthalat			1,8E-08	[12] [14] [15]
Equol	7,6E-04	[10] [11]		
Norethynodrel	0,015	[10]		
Di(2-ethylhexyl)phthalat			> 6,0E-07	[12] [14] [15]
Estriol	0,017	[11]		

Tabelle D.1 — Zusammenfassung relativer Potenzen (P_r) im Vergleich zu 17β-Estradiol für ausgewählte Verbindungen

ReproTox Predictions for Conventional and Alternative Plasticizers (ToxCast 2011)

Biol Reprod. 2011 Aug;85(2):327-39. Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ.

CALUX toxic profile of plastic additives

8	Ş	毋	뛰	핅	핅	핅	AR	AR	吊	PR	G H	с Я	FR	R	F	PX	P	문	ᄝ	ΡA	H	5	AP	B	R I	N	P2	5	5
	Ş.	5	1	5	- -	÷.		÷.		÷.	~	Ĩ	5	≂	~	≂	Â	Â		Ξ	2	Ξ		R	â	8		G	ω S
Ê	ž		S	8		8.		₽.		₽.		₫.					50	ŝ										- <u>-</u>	9 6
a.	2																											5	ÿ
																												×	Б
																													\times
Di(2-ethylhexyl)phthalate		-4.0								-5.2						-6.4													
Di-n-octyl phthalate																													
monoethylhexyl phtalate	-3.5																-5.5												
diisodecylphthalate					-4.2																								
diisononylphthalate																												-3.0	
Dicyclohexylphthalate		-5.3								-5.4		-5.1				-6.7													
Diethylphthalate	-3.5	-4.3						-5.0																					
Diisobutyl phthalate	-4.0	-5.7						-5.3		-5.5																			
Dibutylphthalate		-5.2						-5.5		-5.5																			
Di(n-hexyl)phthalate	-3.5	-5.0						-5.0		-5.5									-4.0				-4.2						
Butyl benzyl phthalate	-3.9	-6.4			-4.4			-5.6		-5.5									-3.7										
di(2-ethylhexyl)adipate																													
Benzophenone	-3.5	-5.2						-6.0		-4.8																			
Etyl paraben	-3.0	-5.2			-5.2			-5.0		-4.0																		-3.5	
4-tert-octylphenol	-5.5	-7.2			-8.5			-6.4		-6.1						-6.0													
4-n-octylphenol		-6.2						-5.6		-5.3																			
Nonylphenol		-5.1			-5.6			-6.5		-5.5																			
4-Cumylphenol		-7.0	-6.4		-7.0			-6.7		-6.1																			
p-(tert-pentyl)phenol	-4.0	-7.7						-6.3		-5.9																			
Diphenyl-p-phenylenediamine	-4.0	-5.5						-5.2		-5.4																			
Bisphenol A	-4.0	-7.3			-6.8			-6.8		-5.5																			
Bisphenol A-dimethacrylate		-6.6			-6.5			-6.0		-5.5						-5.3												-4.7	
Bisphenol F		-6.6			-6.7			-5.4		-4.8																			-3.3

FDCA - little or no endocrine effects

- biobased building block to replace terephthalate in PET

Green chemistry approach to select phthalate alternatives

Compound	Cytotox	ERa	AR-anti	PR-anti	GR-anti	TRb-anti	PPARa	PPARg	AhR	AP1	ESRE	Nrf2	p53 GENTOX	Can we select for phthalates,
Dimethyl phthtalate	-	-	-4.7	-3.6	-	-	-	-	-	-	-	-	-	➢ Furan-based
Dimethyl-2,5-furandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-	endocrine ac
Diethyl phthalate	-3.5	-4.0	-5.0	-4.3	-	-	-	-	-	-	-	-	-	
Diethyl-2,5-furandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-	Phthalate dialkyl ester
Diisobutyl phthalate	-4.5	-5.3	-5.0	-5.0	-	-	-	-	-	-	-	-	-	
Diisobutyl-2,5-furandicarboxylate	-	-4.3	-	-	-	-	-	-	-	-	-	-	-	
Di(2 othulhourd) antholoto		2.0												Furan-based counterpart
DI(2-ethylnexyl) phthalate	-	-3.9	-	-	-	-	-	-	-	-	-	-	-	
Di(2-ethylhexyl)-2,5-turandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-	
Diisodecyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	
Diisodecylfuran-2,5-dicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-	

Can we select promising bio-based alternatives or phthalates, with reduced endocrine activity?

Furan-based counterparts largely lack endocrine activity

activity

In vitro toxicity of Bioplastics and Plant-based materials (I) (Zimmermann et al 2020)

FCM

÷

Type

P

P

P

P

RM

RM

RM

RM

р

P

P

P

P

RM

RM

P

P

р

P

P

P

Р

Р

P

P

P

P

p

RM

RM

RM

RM

Number of detected features

3755

3479

8648

6465

6121

17,224

3002

10,958

3667

880

614

3864

10,959

15,843

9161

1065

18,198

15,770

16,857

9118

8325

20,965

11,901

14,456

3378

2953

20,416

14,031

17,495

5426

5272

1629

n.a.a

819

290

928

947

186

19,028

13,381

390

5625

15,719

Plastic product

Single-use drinking cup

Disposable cutlery

Film

Film

Pellet

Pellet

Pellet

Pellet

Film

Film

Pellet

Pellet

Film

Pellet

Waste bag

Tea bag wrapping

Cigarette filter

Bag for foodstuff

Wine closure

Pellet

Film

Pellet

Film

Box

Food tray

Wine closure

Bag for foodstuf

Reusable bottle

Reusable coffee cup

Chocolate wrapping

Plastic bar

Food trav

Waste bag

Disposable cutlery

Bag for foodstuf

Food tray

Coffee capsule

Bag for foodstuff

Single-use bottle

In vitro toxicity of Bioplastics and Plant-based materials (II) (Zimmermann et al 2020)

Fig. 1. Toxicological signature of bioplastics and plant-based materials based on baseline toxicity (Microtox), oxidative stress response (AREc32) as well as estrogenic (YES) and antiandrogenic activities (YAAS). The results are presented as effect concentrations (EC₂₀, EC₁₀₂), effect levels (EL), relative receptor activation/inhibition and EC₂₀ for cytotoxicity (Cyto). Results are presented as gradient from 0 (green) to 100% (red). The endocrine activities were used as sults were normalized to the lowest and highest effect to cole be endocrine to the web version of the seferences legend, the reader is referred to the web version of this

article

- 43 everyday bio-based products were tested by in vitro bioassays:
- 67% of the samples induced baseline toxicity (Microtox)
- 42% oxidative stress (AREc32),
- 23% anti-androgenicity (anti-YAAS) and
- Several sample cytotoxicity and estrogenicity (YES)

Zimmermann et al (2020). Env Intern 145, 106066

In vitro toxicity of Bioplastics and Plant-based materials (III) (Zimmermann et al 2020)

- In total, ca **41,000 chemical features** with 186–20,965 features were present in the individual samples.
- **80% of the extracts contained > 1000 features**, most of them unique to one sample.
- 343 priority compounds including monomers, oligomers, plastic additives, lubricants and non-intentionally added substances were identified
- Extracts from cellulose- and starch-based materials generally triggered a strong in vitro toxicity and contained most chemical features.
- The toxicological and chemical signatures of polyethylene (Bio-PE), polyethylene terephthalate (Bio-PET), polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), polylactic acid (PLA), polyhydroxyalkanoates (PHA) and bamboo-based materials varied with the respective product rather than the material.
- Toxicity was less prevalent and potent in raw materials than in final products. A comparison with conventional plastics indicates that bioplastics and plant-based materials are similarly toxic.

In vitro toxicity profiling of Plastic Consumer Products (I) (Zimmermann et al 2021)

Ac 😳 🛊

pubs.acs.org/est

Plastic Products Leach Chemicals That Induce *In Vitro* Toxicity under Realistic Use Conditions

Lisa Zimmermann, Zdenka Bartosova, Katharina Braun, Jörg Oehlmann, Carolin Völker,^{||} and Martin Wagner^{*,||}

Cite This: Environ. Sci. Technol. 2021, 55, 11814–11823

Read Online

Table 1. Plastic Products Analyzed in this Study

sample	plastic product	FCM ^a
HDPE 1	bin liners	
LDPE 1	lemon juice bottle	+
LDPE 2	plastic wrap	+
LDPE 3	freezer bag	+
LDPE 4	hair conditioner bottle	
PS 1	yogurt cup	+
PS 2	fruit tray	+
PS 3	vegetable tray	+
PS 4	plastic cup	+
PP 1	yogurt cup	+
PP 2	gummi candy packaging	+
PET 1	oven bag	+
PVC 1	plastic wrap	+
PVC 2	placemat	
PVC 3	pond liner	
PVC 4	floor covering	
PUR 1	scouring pad	
PUR 2	kids bath sponge	
PUR 3	acoustic foam	
PUR 4	shower slippers	
PLA 1	yogurt cup	+
PLA 2	vegetable tray	+
PLA 3	shampoo bottle	
PLA 4	coffee cup lid	+

In vitro toxicity profiling of Plastic Consumer Products (II) (Zimmermann et al 2021)

۲

Figure 1. *In vitro* toxicity of chemicals migrating from plastic consumer products. Baseline toxicity (Microtox) and oxidative stress response (AREc32) are presented as effect concentrations inducing 20% baseline toxicity (EC_{20}) or an induction ratio of 2 (EC_{IR2}) as well as effect levels (EL) at the highest analyzed noncytotoxic concentration. Estrogenic (YES) and antiandrogenic activities (YAAS) are shown as relative (%) activation of the human estrogen receptor α (hER α) and inhibition of the androgen receptor (hAR). Note: x, all analyzed concentrations were cytotoxic; +, food contact materials.

Zimmermann et al (2021). Environ. Sci. Technol. 55, 11814ff

- Toxicological and chemical profiles leaching into water from 24 everyday plastic products covering eight polymer types.
- **Migration experiments over 10 days at 40 °C** and analyzed the migrates using four in vitro bioassays.
- All migrates induced **baseline toxicity** (Microtox)
- 22 oxidative stress response (AREc32)
- 13 antiandrogenicity (anti-YAAS), and
- 1 estrogenicity (YES).

In vitro toxicity profiling of Plastic Consumer Products (III) (Zimmermann et al 2021)

- Overall, between 17 and 8681 relevant chemical features were present in the migrates.
- Between 1 and 88% of the plastic chemicals associated with one product were migrating.
- Only ~8% of all detected features were identified = implying that most plastic chemicals remain unknown.
- LDPE, PVC, and PU induced most toxicological endpoints
- These results demonstrate that plastic products readily **leach many more chemicals than previously known**, some of which are toxic in vitro.
- This highlights that **humans are exposed** to many more plastic chemicals than currently considered in public health science and policies.

Zimmermann et al (2021). Environ. Sci. Technol. 55, 11814ff

Latest study about In vitro toxicity profiling of Plastic Consumer Products (Stevens et al 2022)

- 39 plastic food contact materials from Germany, Norway, South Korea the UK, and the US, covering the seven polymer types with the highest global market share were extracted and analyzed with CALUX reporter gene assays: Pregnane X receptor (PXR), peroxisome proliferator receptor gamma (PPARgamma), estrogen receptors alpha (ER) and androgen receptor (AR).
- The chemicals extracted from 36 out of 39 plastics activated or inhibited one or more receptors with activities up to 100% of the respective positive controls.
- The PXR was activated by 36, the ERalpha by 25, the PPARgamma by 23 samples, while the AR was inhibited by 14 of 39 samples.
- In total, > 16,000 unique chemical features with the number of features per sample ranging from 37 to 9,936 were detected.
- Only 16% of the chemical features were tentatively identified using spectral libraries and *in silico* tools.
- These results confirm that many plastic materials contain **endocrine disrupting chemicals**, which needs to be identyfied.
- This study highlights again the importance of analyzing whole mixtures of finished products and contributes to improving our understanding of plastics as a source of exposure to endocrine disrupting chemicals
- These results demonstrate that plastic products readily **leach many more chemicals than previously known**, some of which are toxic in vitro.

How to make safer & greener plastic & bioplastic devices: Industrial innovation

APPROACH OF NESTLÉ RESEARCH CENTER FOR METAL PACKAGING COATINGS (VERSION 1.0 NOV_2017)

CHEMISTRY: LC-MS DATA DATA TOP 100 PEAKS THREE LABS-DATA DESCRIPTION

Lab C 100 peaks 89 distinct peaks*

Lab E 109 peaks 72 distinct peaks*

Lab A 41 peaks 38 distinct peaks*

*Distinct peaks: Difference on exact mass (-cation) > 0.05 Da

Lab E reporting

Lab A reporting

Distribution top 100 peaks

Lab E reporting

Lab A reporting

Distribution top 41 peaks

Hormone Activity Results by a panel of CALUX bioassays

(Marin-Kuan, Behnisch Szabo et al. 2023)

Erα CALUX										
Migration Sample	LA	BA	LA	B B	LA	BC				
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C				
Positive Control										
Test Coating										
Uncoated Control										
Blank										

ERα 100%

Anti-Era CALUX										
Migration Sample	LA	B A	LA	B B	LAB C					
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C				
Positive Control										
Test Coating										
Uncoated Control										
Blank										

Anti-ERa 92%

AR CALUX											
Migration Sample	LA	LAB A LAB B LAB C									
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C					
Positive Control											
Test Coating											
Uncoated Control											
Blank											

Anti-AR CALUX											
Migration Sample	LA	B A	LA	B B	LA	B C					
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C					
Positive Control											
Test Coating											
Uncoated Control											
Blank											

Anti-AR 75%

Concordance

Concordance Observed for 44 out of 48 Samples

AR 100%

No Concordance

pubs.acs.org/journal/ascecg

Letter

Novel Biobased Furanic Diols as Potential Alternatives to BPA: Synthesis and Endocrine Activity Screening

Catherine A. Sutton, Alexander Polykarpov, Keimpe Jan van den Berg, Alexander Yahkind, Linda J. Lea, Dean C. Webster,* and Mukund P. Sibi*

Cite This: https://dx.doi.org/10.1021/acssuschemeng.0c08207

ACCESS

III Metrics & More

Article Recommendation

ABSTRACT: A series of asymmetric and symmetric diols were prepared in high yields from biomass-derived feedstocks 5hydroxymethyl furfural (HMF) and 2,5-diformyl furan (DFF) as potential replacements for bisphenol A (BPA). The diols were screened for estrogenic, androgenic, antiandrogenic, and antithyroid activities in reporter gene assays. Several of the low molecular weight asymmetric diols did not exhibit activity in any of the assays and thus have promise as potentially more sustainable alternatives to BPA.

Recommendations	s Supporting Information
Petroleum-derived Diol	Cellulosic Biomass Alternatives
НОЛИСИНИ	HO OH OH OH OH OH OH OH Safer Replacements

KEYWORDS: Furanic diols, Bisphenol A replacement, Biomass, 5-Hydroxymethyl furfural, Endocrine activity

Table 1. Endocrine Activity of Asymmetric Furanic Diols vs BPA^a

Entrar	to the second	1		
Entry	$ER-\alpha$ -CALUX ^o	AR CALUX ^b	Anti-AR CALUX ^c	Anti-TR β -CALUX ^c
BPA	0.075	ND	0.013	27
3	NA	NA	NA	NA
5a	NA	NA	NA	NA
5b	NA	NA	NA	NA
5c	410	NA	78	300
5d	710	NA	120	360
5e	NA	NA	49	NA
5f	62	NA	40	110
5g	9.65	NA	NA	NA
5h	53	NA	50	71
	BPA 3 5a 5b 5c 5d 5e 5f 5g 5h	BPA 0.075 3 NA 5a NA 5b NA 5c 410 5d 710 5e NA 5f 62 5g 9.65 5h 53	BPA 0.075 ND 3 NA NA 5a NA NA 5b NA NA 5c 410 NA 5d 710 NA 5e NA NA 5f 62 NA 5g 9.65 NA 5h 53 NA	BPA0.075ND0.0133NANANA5aNANANA5bNANANA5c410NA785d710NA1205eNANA495f62NA405g9.65NA50

PFAS in disposable food packaging and tableware: Thyroid hormone transport interferences by TTR-FITC-T4 bioassay

Throwaway Packaging, Forever Chemicals

European wide survey of PFAS in disposable food packaging and tableware

OIL-BEADING TAKEAWAY PAPER

SAMPLE ID	TOF (mg/kg dw)	TOF (µg/ dm2 dw)	6:2 FTOH (ng/g)	6:2 FTS (ng/g)	10:2 FTS (ng/g)	% identified fluorine	TTR - FITC-T4 activity (µg PFOA/g)	TTR - FITC-T4 LOQ (µg PFOA/g)
DE-PAP-KFC-17a	770	247	528	<loq< td=""><td><loq< td=""><td>0.047</td><td>341</td><td>26</td></loq<></td></loq<>	<loq< td=""><td>0.047</td><td>341</td><td>26</td></loq<>	0.047	341	26
FastF-FR-5	700	215	706	<loq< td=""><td><loq< td=""><td>0.068</td><td>220</td><td>29</td></loq<></td></loq<>	<loq< td=""><td>0.068</td><td>220</td><td>29</td></loq<>	0.068	220	29
FastF-FR-3	670	224	192	39.5	104	0.033	NA	-
DE-PAP-NRDS-19a	640	291	234	<loq< td=""><td><loq< td=""><td>0.025</td><td>NA</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.025</td><td>NA</td><td>-</td></loq<>	0.025	NA	-
FastF-FR-2	530	351	219	<loq< td=""><td><loq< td=""><td>0.028</td><td>NA</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.028</td><td>NA</td><td>-</td></loq<>	0.028	NA	-
DE-PAP-DDNT-20a	510	270	194	<loq< td=""><td><loq< td=""><td>0.026</td><td>NA</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.026</td><td>NA</td><td>-</td></loq<>	0.026	NA	-
FasF-UK-5a	480	157	16.9	<loq< td=""><td><loq< td=""><td>0.0024</td><td>39</td><td>19</td></loq<></td></loq<>	<loq< td=""><td>0.0024</td><td>39</td><td>19</td></loq<>	0.0024	39	19
CZ-FCM-KFC-06	480	134	634	<loq< td=""><td><loq< td=""><td>0.090</td><td>69</td><td>33</td></loq<></td></loq<>	<loq< td=""><td>0.090</td><td>69</td><td>33</td></loq<>	0.090	69	33
CZ-FCM-MCD-01b	470	176	335	<loq< td=""><td><loq< td=""><td>0.048</td><td>52</td><td>16</td></loq<></td></loq<>	<loq< td=""><td>0.048</td><td>52</td><td>16</td></loq<>	0.048	52	16
FastF-UK-2	440	177	<loq< td=""><td><loq< td=""><td>34.4</td><td>0.0050</td><td>60</td><td>30</td></loq<></td></loq<>	<loq< td=""><td>34.4</td><td>0.0050</td><td>60</td><td>30</td></loq<>	34.4	0.0050	60	30
CZ-FCM-BB-01b	400	400	345	<loq< td=""><td><loq< td=""><td>0.059</td><td>NA</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.059</td><td>NA</td><td>-</td></loq<>	0.059	NA	-
FastF-UK-4	390	125	248	<loq< td=""><td><loq< td=""><td>0.043</td><td>NA</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.043</td><td>NA</td><td>-</td></loq<>	0.043	NA	-
DE-PAP-MCD-26	370	159	132	<loq< td=""><td><loq< td=""><td>0.024</td><td>180</td><td>26</td></loq<></td></loq<>	<loq< td=""><td>0.024</td><td>180</td><td>26</td></loq<>	0.024	180	26

Toys & consumer products with high levels of brominated dioxins (Arnika report 2018)

Jindřich	n Petrlik 🛛 Peter Behnisch	Joseph DiGangi	Country / Sample	Туре	PBDD/Fs (pg TEQ/g) ¹	DR CALUX (pg TEQ/g)	PBDEs (ug/g) ²	HBCD (ug/g)	TBBPA (ug/g)
			Argentina ARG_04	Rubik's-like cube	727	1,200	708	1	na³
			Brazil BRZ-T-7A	Toy, car	750	590	169	0.2	8
11	1-		Cambodia KAM-H-1	Hair diadem	1,950	1,500	358	0.3	10
1	TOV		Canada CA-H-1C	Hair rack	1,500	1,300	718	< 0.01	1
	ΙΟΧΙ		Czechia JI_11	Cube	2,159	17,000	2,614	91	na³
	601		Czechia SIX_02	Hairclip	60	210	1,623	8	na³
	300		France FR-T-3	Toy revolver	2,058	520	1,077	1	314
~	Dioxins in Plastic		Germany D-TO7	Key fob	3,821	820	511	2	307
3			India IND_11	Rubik's-like cube	690	1,300	593	2	na³
E	Sian		Japan JP-O-1	Smart phone holder	1,200	560	693	0.5	37
-	T	UE I	Nigeria NIG_06	Rubik's-like cube	860	4,800	1,780	9	na³
	and the second s	Arnika 2018	Nigeria NIG_11	Rubik's-like cube	56	370	1,218	8	na³
ARNIKA		UND Sweden Sverige	Portugal PT-T-10a	Toy small guitar	1,137	270	3,318	2	37

High throughput extraction of plastic in our study here

- A) <u>THF/hexane:</u>
- 0.5 gr plastic, milling,
- add 10 ml THF, shake 20 min,
- add dropwise 2 x 10 ml hexane, combine,
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

B) 50% Ethanol/Water:

- 0.5 gr plastic, milling,
- add 10 ml EtOH/Water (50%), put in oven at 60 ° C for 3 days
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

C) 20% Ethanol/Water:

- 0.5 gr plastic, milling,
- add 10 ml EtOH/Water (20%), put in oven at 40 $^{\circ}$ C for 1 day
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

In vitro toxicity profiling by CALUX panel: Sample N3 - HDPE

Nr.	Polymer type	Sampling location	Sample ID	Sampling date	Pellet origin	Pellet feedstock Material	Polymer character istics	Used additives	Pellet color	Pellet uses	Sending samples Germany, Spain & Netherlands
	High Density	Nigeria,	01								
	Polyethylene	Anambra,	Nigeria	02/18/20						Jerrycan, grease container,	
N3	(HDPE)	Onitsha	HDPE	23	National feedstock	Water tanks	Flexible	Master batch	Black	spoons	Neth Ger Spa

Technic	Parameter	Result	Unit	
Extraction: THF/hexane				
Cytotox CALUX	Celldeath	41	ug Tributyltin acetate eq.,	
AR CALUX	Anti-androgens	LOQ (<8.3)	ug Flutamide eq./g	
P53 CALUX	P53 transcriptional activators	LOQ (<0.28)	ug Actinomycin D eq./gra	
ERa CALUX	Estrogens	LOQ (<0.13)	ng 17b Estradiol eq./g	
PAH CALUX	Polycyclic aromatic hydrocarl	2000	ng Benzo[a]pyrene eq./g	
Extraction: 50% ethanol				
Cytotox CALUX	Celldeath	0.55	ug Tributyltin acetate eq.,	
AR CALUX	Anti-androgens	LOQ (<4.0)	ug Flutamide eq./g	
P53 CALUX	P53 transcriptional activators	LOQ (<0.027)	ug Actinomycin D eq./gra	
ERa CALUX	Estrogens	LOQ (<0.044)	ng 17b Estradiol eq./g	
PAH CALUX	Polycyclic aromatic hydrocarl	7000	ng Benzo[a]pyrene eq./g	

In vitro toxicity profiling by CALUX panel: Sample N9 - LDPE

Nr.	Polymer type	Sampling location	Sample ID	Sampling date	Pellet origin	Pellet feedstock Material	Polyme r charact eristics	Used additiv	ves	Pellet color	Pellet use	!S	Sending samples
N9	Low Density Polyethylene (LDPE)	Nigeria, Anambra, Onitsha	04 Nigeria LDPE	45141	National feedstock	Toothbrush, disposable food container (single use), cosmetics containers	Flexible	Master	⁻ batch	Mixed colour	cover for and plasti container	plates c s, spoons	Neth Ger Spa
			E	xtraction:	THF/hexane								
		4	C	Cytotox CA	LUX	Celldeath				32		ug Tribut	yltin acetate eq.,
T		P	A	AR CALUX		Anti-androgen	S			LOQ (<8.3)		ug Flutan	nide eq./g
			F	53 CALUX		P53 transcription	onal acti	vators		LOQ (<0.28)		ug Actino	omycin D eq./gra
	and the second	5443	E	Ra CALUX		Estrogens				LOQ (<0.13)		ng 17b Es	stradiol eq./g
	State 1	11.	F	PAH CALUX	<	Polycyclic arom	natic hyd	lrocarl		610		ng Benzo	[a]pyrene eq./g
			E	xtraction:	50% ethanol								
		19	C	Cytotox CA	LUX	Celldeath				0.34		ug Tribut	yltin acetate eq.,
	1000	1	A	AR CALUX		Anti-androgen	S			14		ug Flutan	nide eq./g
C		and a	F	53 CALUX		P53 transcription	onal acti	vators		LOQ (<0.029)	ug Actinc	omycin D eq./gra
AL		ALC: NO	E	Ra CALUX		Estrogens				0.47		ng 17b Es	stradiol eq./g
	The second second		F	AH CALUX	κ	Polycyclic arom	natic hyd	lrocarl		600		ng Benzo	[a]pyrene eq./g

In vitro toxicity profiling by CALUX panel: Sample N22 - PVC

Nr.	Polymer type	Sampling location	Sample ID	Sampling date	Pellet origin	Pellet feedstock Material	Polymer characteri stics	Used additives	Pellet color	Pellet uses	Sending samples Germany, Spain & Netherlands
	Polyvinyl	Nigeria,	05		N						
	Chloride	Anambra,	Nigeria		National	Sandals or		Master			
N22	(PVC)	Onitsha	PVC	45110	feedstock	footwear	Semi-rigid	batch	Black	Slippers, carpet	Neth Ger Spa

X	
	Y

45110	feedstock	footwear	Semi-rigid bat	ch Bla	ack	Slippers, carpet	Neth Ger Spa
Extraction:	HF/nexane						
Cytotox CAL	UX	Celldeath			1.6		ug Tributyltin acetate eq.,
AR CALUX		Anti-androgens			390		ug Flutamide eq./g
P53 CALUX		P53 transcription	al activators	L	0Q (<0	.11)	ug Actinomycin D eq./gra
ERa CALUX		Estrogens			5.7		ng 17b Estradiol eq./g
PAH CALUX		Polycyclic aroma	45000			ng Benzo[a]pyrene eq./g	
Extraction: 2	20% ethanol						
Cytotox CAL	UX	Celldeath			1.1		ug Tributyltin acetate eq.,
AR CALUX		Anti-androgens			2.8		ug Flutamide eq./g
P53 CALUX		P53 transcription	al activators	LC	DQ (<0.	096)	ug Actinomycin D eq./gra
ERa CALUX		Estrogens			0.044	4	ng 17b Estradiol eq./g
PAH CALUX		Polycyclic aroma	tic hydrocarl		470		ng Benzo[a]pyrene eq./g

In vitro toxicity profiling by CALUX panel: Sample N24 - PP

		Sampling	Sample	Sampling		Pellet feedstock	Polymer character	Used	Pellet		Sending samples Germany, Spain
Nr.	Polymer type	location	ID	date	Pellet origin	Material	istics	additives	color	Pellet uses	& Netherlands
		Nigeria,	02								
	Polypropylene	Anambra,	Nigeria		National	Toys, jars, cup,		Master	White	Pallets, plastic bottles,	
N24	(PP)	Onitsha	PP	45110	feedstock	pellets	Flexible	batch	and pick	beverage cup	Neth Ger Spa

Extraction: THF/hexane			
Cytotox CALUX	Celldeath	16	ug Tributyltin acetate eq.,
AR CALUX	Anti-androgens	12	ug Flutamide eq./g
P53 CALUX	P53 transcriptional activators	LOQ (<0.084)	ug Actinomycin D eq./gra
ERa CALUX	Estrogens	LOQ (<0.034)	ng 17b Estradiol eq./g
PAH CALUX	Polycyclic aromatic hydrocarl	1500	ng Benzo[a]pyrene eq./g
Extraction: 50% ethanol			
Cytotox CALUX	Celldeath	LOQ (<0.34)	ug Tributyltin acetate eq.,
AR CALUX	Anti-androgens	10	ug Flutamide eq./g
P53 CALUX	P53 transcriptional activators	LOQ (<0.0096)	ug Actinomycin D eq./gra
ERa CALUX	Estrogens	0.16	ng 17b Estradiol eq./g
PAH CALUX	Polycyclic aromatic hydrocarl	3200	ng Benzo[a]pyrene eq./g

Take home message for bioplastic

- For a SAFER & SUSTAINABLE approach complex mixtures of known and unknown chemicals in plastic and bioplastics need to be monitored by a COMBINED chemical AND effect-based biological toxicity screening tests (e.g., OECD TG455 and TG458)!
- Safe design/Green chemistry using in vitro toxicity is already in many R&D applications for all kinds of plastic materials used, but international regulatory framework is missing!
- High-throughput bioassays are used decades already for chemicals testing, why not using also for safer bioplastic testing following industrial leaders...

THANK YOU FOR YOUR ATTENTION

CONTACT:

Dr. Peter A. Behnisch

peter@bds.nl