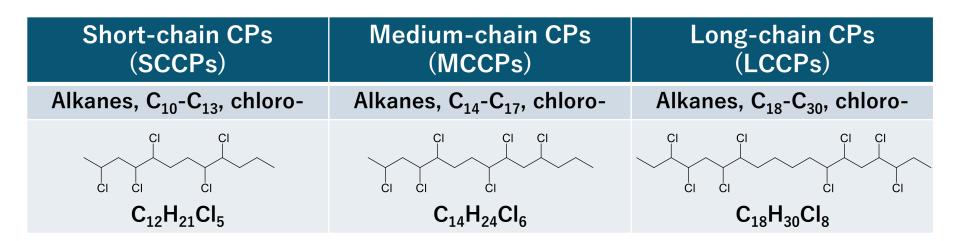


Analysis of SCCPs and MCCPs with LC-MS/MS


<u>Hidenori Matsukami</u>, Yago Guida, Natsuko Kajiwara National Institute for Environmental Studies, Japan

1

Chlorinated paraffins (CPs)

- Since the 1930s, commercial mixtures of CPs have been produced mainly for use as metal-working lubricants and polyvinyl chloride (PVC) plasticizers.
- SCCPs are chemicals of concern because of their environmental persistence, bioaccumulation, and inherent toxicity.
- In 2017, SCCPs was listed in Annex A of the Stockholm Convention on POPs.

SCCP wastes under the Basel Convention

- SCCP wastes at concentrations above the low POP content value (100 or 10,000 mg/kg) must be destroyed or irreversibly transformed in an environmentally sound manner under the Basel Convention's technical guidelines on the management of POP wastes.
- The Estimated volumes of PVC and rubber waste containing SCCPs used in between 1935 to 2015 might reach about 2 million metric tons in total, be yet to peak around 2021, and continue until 2100 (Glüge et al., 2016).
- Little information exists on wastes and consumer products containing CPs for the appropriate management of SCCP wastes.
- Identification of wastes SCCPs content above the LPC value (100 or 10000 mg/kg) is needed for their effective environmentally sound management.

Analytical method for the determination of CPs

MS	Separation	lonization	Sample	Reference
Magnetic sector-HRMS	GC	NCI	Biota, sediment	Tomy et al., 1997
TOF-HRMS	GC	NCI	Food	Takasuga et al., 2011
TOF-HRMS	-	APCI	Sludge, air	Bogdal et al., 2015
Orbitrap-HRMS	GC	NCI	Food	Krätschmer et al., 2018
QQQMSMS	GC	EI	Biota	Zencak et al., 2004
QMS	GC	NCI	Biota	Coelhan, 1999
QMS	GC	NCI	Leather	ISO 18219, 2015
QMS	GC	NCI	Water	ISO/DIS 12010, 2018

- HRMS can resolve homologues yielding ions, can reduce background interference, and can improve detection accuracy.
- Not all laboratories and institutions can afford, or have access to, an HRMS system.

Analytical method for the determination of CPs

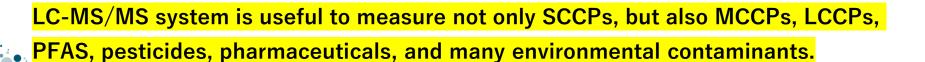
MS	Separation	lonization	Sample	Reference
Magnetic sector-HRMS	GC	NCI	Biota, sediment	Tomy et al., 1997
TOF-HRMS	GC	NCI	Food	Takasuga et al., 2011
TOF-HRMS	-	APCI	Sludge, air	Bogdal et al., 2015
Orbitrap-HRMS	GC	NCI	Food	Krätschmer et al., 2018
QQQMSMS	GC	EI	Biota	Zencak et al., 2004
QMS	GC	NCI	Biota	Coelhan, 1999
QMS	GC	NCI	Leather	ISO 18219, 2015
QMS	GC	NCI	Water	ISO/DIS 12010, 2018

- GC-NCI-QMS is a common means of determining CP content in industrial and environmental samples.
- This approach requires time-consuming clean-up and fractionation of samples to minimize interference from other halogenated compounds in the sample.
- Cheaper, more accessible, and practical methods for examining CP contamination in wastes are needed.

Our LC-MS/MS method

Liquid chromatography—electrospray ionization-tandem mass spectrometry for the determination of short-chain chlorinated paraffins in mixed plastic wastes

6

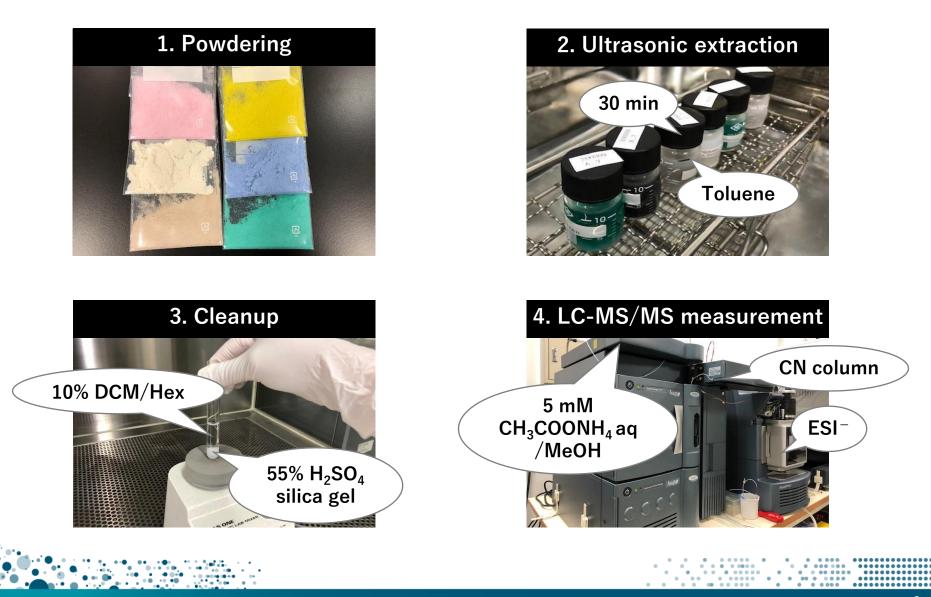

Hidenori Matsukami ^{a, *}, Hiroaki Takemori ^b, Takumi Takasuga ^b, Hidetoshi Kuramochi ^a, Natsuko Kajiwara ^a

^a Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan

^b Shimadzu Techno-Research, Inc. 1 Nishinokyo-Shimoai-cho, Nakagyo-Ku, Kyoto, 604-8436, Japan

HIGHLIGHTS

- Novel mass spectrometric method to quantify SCCPs in plastic wastes was developed.
- Major SCCP homologues were identified with good separation and peak width.
- Present data were in good agreement with high-resolution mass spectrometry data.
- Plastic wastes containing SCCPs above Basel Convention limits can be identified.



Today's topics

- 1. Our LC-MS/MS method to screen wastes and consumer products containing CPs.
- 2. Results of the inter-laboratory study for the screening of wastes and consumer products containing CPs.

Screening for wastes and consumer products containing CPs

QAQC of waste sample preparation

Average recoveries of SCCP homologues from the spiked wastes were 85–104%.

SCCP homologues in procedural blanks were below the method detection limits.

LC-MS/MS parameters

....

Liquid chromatograph	Waters ACQUITY UPLC H-Class			
Column	ZORBAX SB-CN (2.1x100 mm, 1.8 μ m) (Agilent)			
Column temperature		40°C		
Mobile phase A		H ₂ O with 5 mM ammonium acetate		
Mobile phase B		Methanol with 5 mM ammonium acetate		
Gradient (%B)	0 min (6	60%) – 5 min (73%) – 20 min (99%) – 22 min (99%) – 22.1 min (60%)		
Flow rate		0.4 mL/min		
Injection volume	5 μL			
Mass spectromete	er	Waters Xevo TQ-S micro		
Ionization method	ł	ESI negative		
Capillary voltage		0.75 kV		
lon source temperat	ure	110°C		
Desolvation tempera	ature 500°C		ture 500°C	
Desolvation gas flo	flow 1000 L/hr			
Cone gas flow		20 L/hr		
Cone voltage		20 V		

......

......

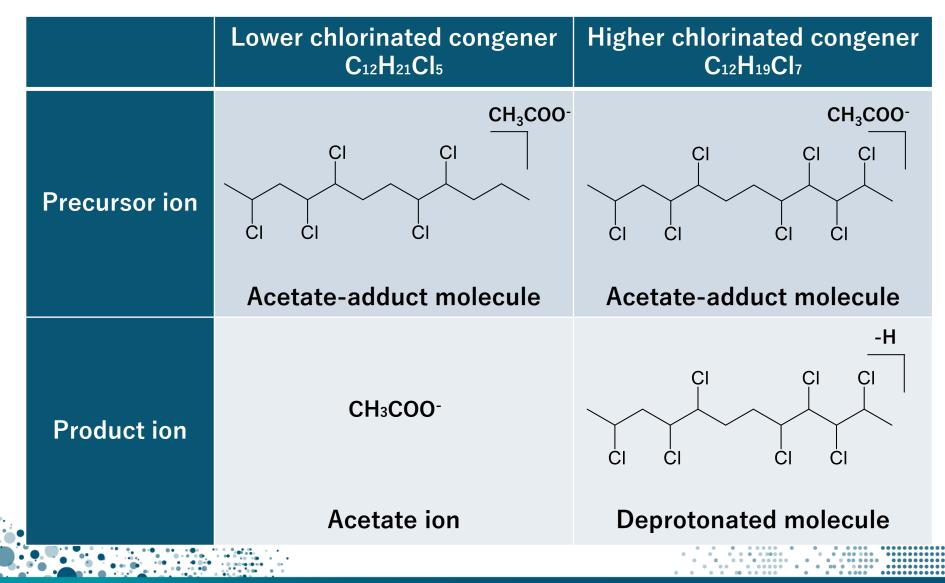
..........

.....

....

.

....


.....

....

....

MRM transition

MRM transitions (SCCPs)

MRM (C10 CI4-8)		MRM (C11 CI4-9)	
C10Cl4	m/z 339>59	C11Cl4	m/z 353>59
C10Cl5	m/z 373>59	C11Cl5	m/z 387>59
C10Cl6	m/z 407>347	C11Cl6	m/z 421>361
C10Cl7	m/z 441>381	C11Cl7	m/z 455>395
C10Cl8	m/z 477>417	C11Cl8	m/z 491>431
C10Cl9	NA	C11Cl9	m/z 525>465
C10Cl10	NA	C11Cl10	NA

MRM (C12 CI4-10)		MRM (C13 Cl4-10)	
C12Cl4	m/z 367>59	C13Cl4	m/z 381>59
C12Cl5	m/z 401>59	C13Cl5	m/z 415>59
C12Cl6	m/z 435>375	C13Cl6	m/z 449>389
C12Cl7	m/z 469>409	C13CI7	m/z 483>423
C12Cl8	m/z 505>445	C13Cl8	m/z 519>459
C12Cl9	m/z 539>479	C13Cl9	m/z 553>493
C12Cl10	m/z 573>513	C13Cl10	m/z 587>527

National Institute for Environmental

MRM transitions (MCCPs)

MRM (C14 Cl4-10)		MRM (C15 CI4-10)	
C14Cl4	m/z 395>59	C15Cl4	m/z 409>59
C14Cl5	m/z 429>59	C15Cl5	m/z 443>59
C14Cl6	m/z 463>59	C15Cl6	m/z 477>59
C14Cl7	m/z 497>437	C15Cl7	m/z 511>451
C14Cl8	m/z 533>473	C15Cl8	m/z 547>487
C14Cl9	m/z 567>507	C15Cl9	m/z 581>521
C14Cl10	m/z 601>541	C15Cl10	m/z 615>555

MRM (C16 CI4-10)		MRM (C17 Cl4-10)	
C16Cl4	m/z 423>59	C17Cl4	m/z 437>59
C16Cl5	m/z 457>59	C17Cl5	m/z 471>59
C16Cl6	m/z 491>59	C17Cl6	m/z 505>59
C16Cl7	m/z 525>465	C17CI7	m/z 539>479
C16Cl8	m/z 561>501	C17Cl8	m/z 575>515
C16Cl9	m/z 595>535	C17Cl9	m/z 609>549
C16Cl10	m/z 629>569	C17Cl10	m/z 643>583

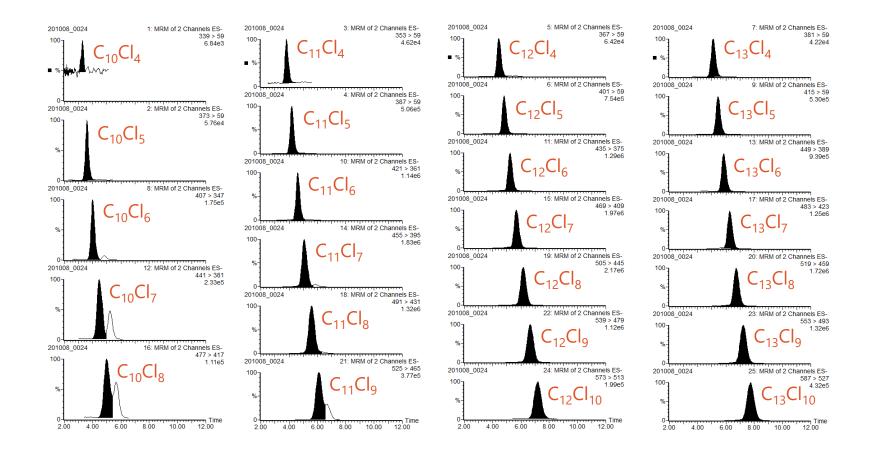
National Institute for Environmental

Studies, Japan

MRM transitions (LCCPs)

MRM (C18 CI4-10)		MRM (C19 Cl4-10)	
C18Cl4	m/z 451>59	C19Cl4	m/z 465>59
C18Cl5	m/z 485>59	C19Cl5	m/z 499>59
C18Cl6	m/z 519>59	C19Cl6	m/z 533>59
C18Cl7	m/z 553>493	C19Cl7	m/z 567>507
C18Cl8	m/z 589>529	C19Cl8	m/z 603>543
C18Cl9	m/z 623>563	C19Cl9	m/z 637>577
C18CI10	m/z 657>597	C19Cl10	m/z 671>611

MRM (C20 CI4-10)				
C20Cl4	m/z 479>59			
C20Cl5	m/z 513>59			
C20Cl6	m/z 547>59			
C20Cl7	m/z 581>521			
C20Cl8	m/z 617>557			
C20Cl9	m/z 651>591			
C20Cl10	m/z 685>625			


National Institute for Environmental

Chromatograms of SCCPs

.....

•• ••

A marked improvement in peak separation of 25 congeners of SCCPs was achieved by our LC-MS/MS method.

......

......

......

......

...........

. . . .

.

....

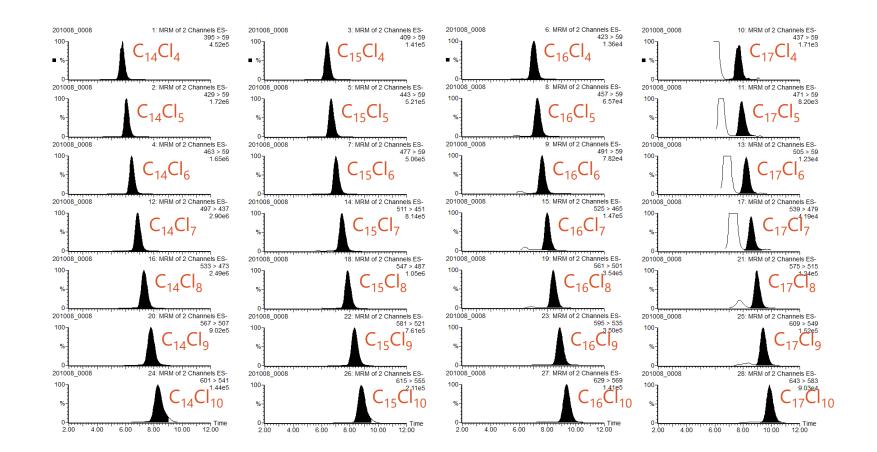
.

.

.

-

.


.

....

.....

Chromatograms of MCCPs

28 congeners of MCCPs were also separated and identified by our LC-MS/MS method.

......

......

.....

......

...........

. ...

.

....

.

.

.

....

. .

.

.

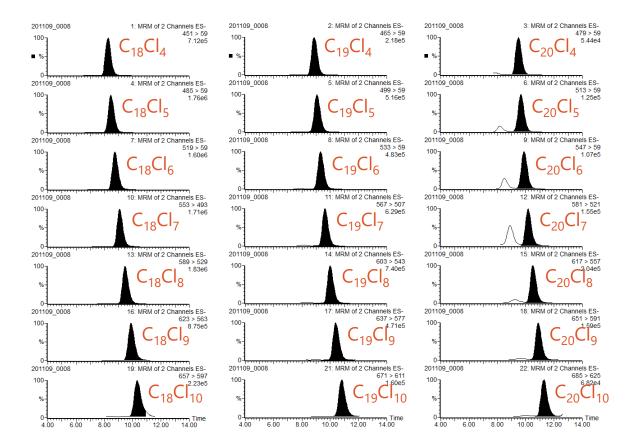
....

....

. .

Chromatograms of LCCPs

•


.....

. ...

.

- 10

. ...

21 congeners of LCCPs were also measured by our LC-MS/MS method.

17

......

......

......

......

...........

. ...

.

....

.

.

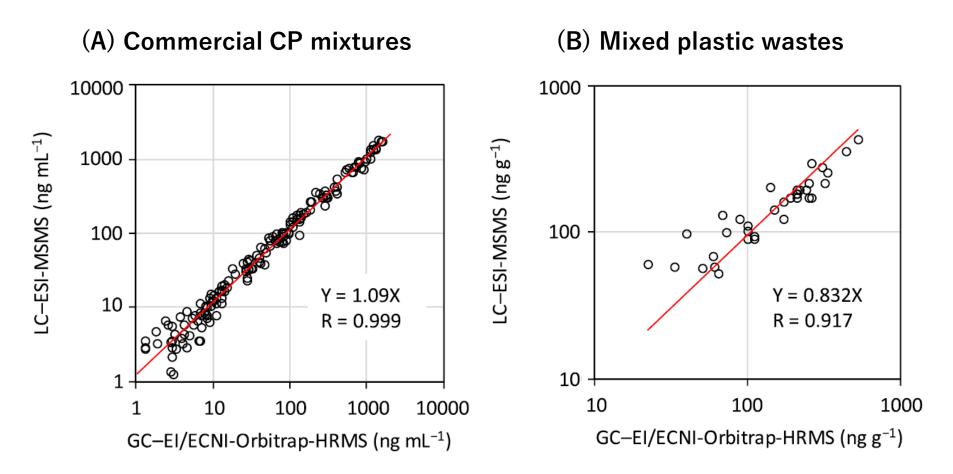
•

....

. .

.

.


....

....

. .

Method verification

National Institute for Environmental Studies, Japan

Good agreement was observed in commercial CP mixtures and mixed plastic wastes between the developed method and HRMS method

Today's topics

- 1. Our LC-MS/MS method to screen wastes and consumer products containing CPs.
- 2. Results of the inter-laboratory study for the screening of wastes and consumer products containing CPs.

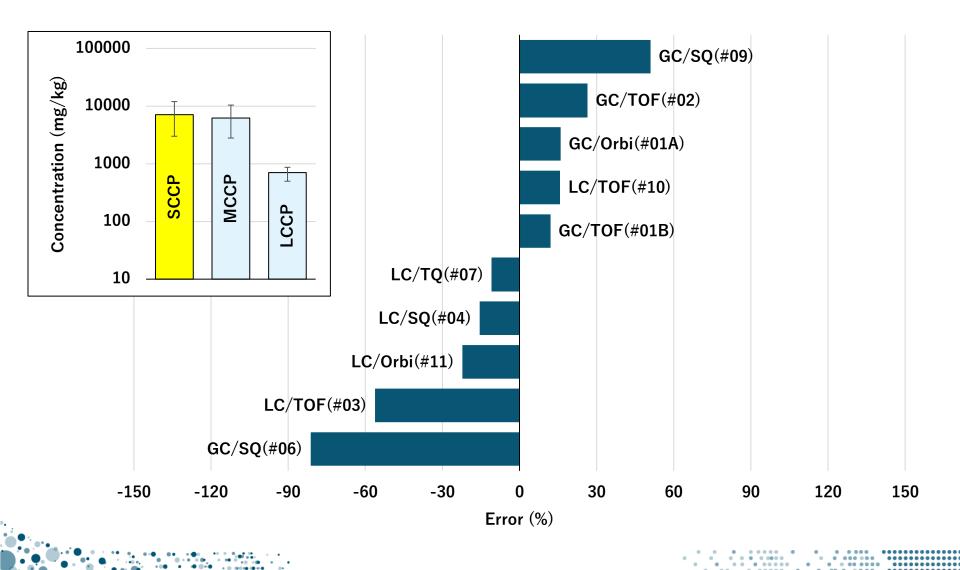
Sample content

Ċ

Sample ID	Sample content				
PVC-A	Fine powder of PVC toys				
PVC-B	Fine powder of PVC sheathing from electric cords				
PVC-C	Fine powder of PVC toys				
PVC-D	Fine powder of PVC sheathing from electric cords				

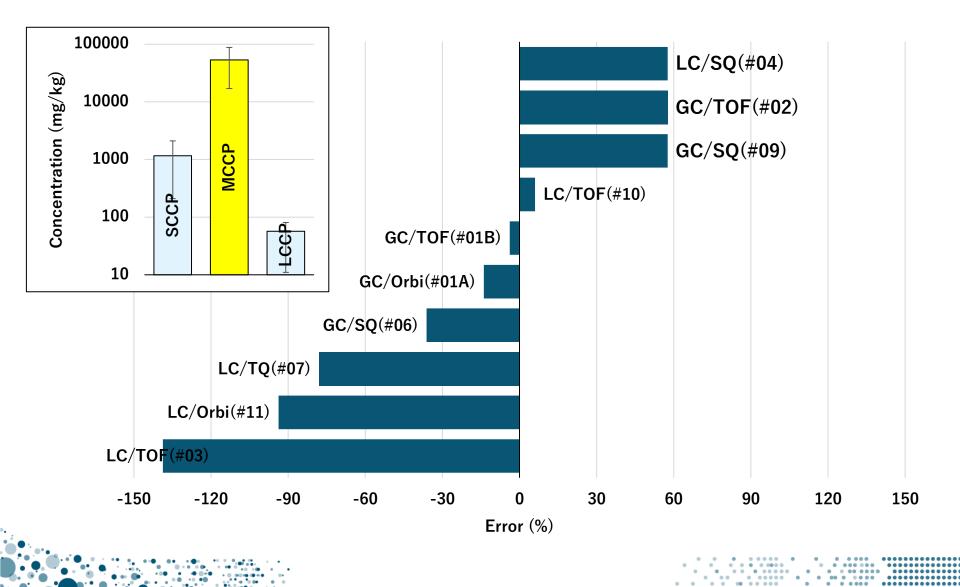
Participating laboratories

Instrument	Resolution	MS	Ionization	Column	Lab ID
		Orbitrap	APCI ⁻	BEH C18	#11
	High	TOF	APCI ⁻	-	#10
LCMS		TOF	APCI ⁻	BEH C8	#03
LCIVIS		Triple Q	ESI-	SB-CN	#07
	Low	Single Q	APCI ⁻	Cortecs C8	#04
		Single Q	APCI ⁻	Inertsil C4	#05
	11:24	Orbitrap	EI/ECNI	DB-5MS DB-1HT	#01
	High TOF TOF	TOF	EI/ECNI	DB-5MS	
GCMS		TOF	EI/ECNI	DB-5MS	#02
	Low	Single Q	ECNI	DB-5MS	#09
	Low	Single Q	ECNI	HP5-MSUI	#06


Results from all the participants

Sample ID	Compound	Concentration (mg/kg)	CV (%)
	SCCP	220(110~410)	45
PVC-A	MCCP	2100(1000~4300)	53
	LCCP	ND	-
	SCCP	1200(210~2100)	62
PVC-B	MCCP	53000(17000~88000)	35
	LCCP	57(11~81)	70
	SCCP	7100(3000~12000)	37
PVC-C	MCCP	6200 (2800 ~ 10000)	44
	LCCP	700(500~870)	26
PVC-D	SCCP	8600(2800~20000)	59
	MCCP	56000(23000~89000)	34
	LCCP	2800(2300~3600)	20

CV values for SCCPs: PVC-C < PVC-A < PVC-D < PVC-B


..........

Results of SCCPs in PVC-C

Results of SCCPs in PVC-B

National Institute for Environmental Studies, Japan

Results by proposed LC/MSMS method

Good agreement was observed in this study between the proposed LC/MSMS method and HRMS methods.

nstitute for

Conclusion

- Data by our LC-MS/MS method were both quantitatively and qualitatively comparable with those by HRMS methods.
- Our LC-MS/MS method is cheaper, more accessible, and practical to use than HRMS methods and it showed retention with good separation and peak shapes of CP congeners.

Acknowledgement

- Technical support:
 - Ms. Mino Hasegawa (NIES)
 - Mr. Humiaki Kato (NIES)
- Research funds:
 - Environment Research and Technology Development Fund (no. 3-1901) of the Environmental Restoration and Conservation Agency, Japan.

Relevant literature

Chemosphere 244, 125531, 2020.

International Journal of Environmental Research and Public Health	PI
Article Short- and Medium-Chain Chlorinated Paraffins in Polyvinylchloride and Rubber Consumer Products and Toys Purchased on the Belgian Market	
Thomas J. McGrath ^{1,*} , Giulia Poma ¹ ⁽), Hidenori Matsukami ² (), Govindan Malarvannan ¹ (), Natsuko Kajiwa and Adrian Covaci ^{1,∗} ()	ara ²

International Journal of Environmental

Research and Public Health 18, 1069, 2021.

Science of the Total Environment 849, 157762, 2022.

Thank you for your kind attention.

29