Instrumental analysis of brominated POPs

<u>Kajiwara N.</u>¹, Eguchi A.², Takahashi A.³, Matsukami H.¹ ¹Material Cycles Division, National Institute for Environmental Studies (NIES), Japan; ²Chiba University, Japan; ³IDEA Consultants, Inc., Japan

1. Introduction

- 2. A simplified GC method to analyze POP-BFRs in plastics
- 3. Inter-lab Study on POP-BFRs in plastics

Brominated POPs Used as Plastic Additives

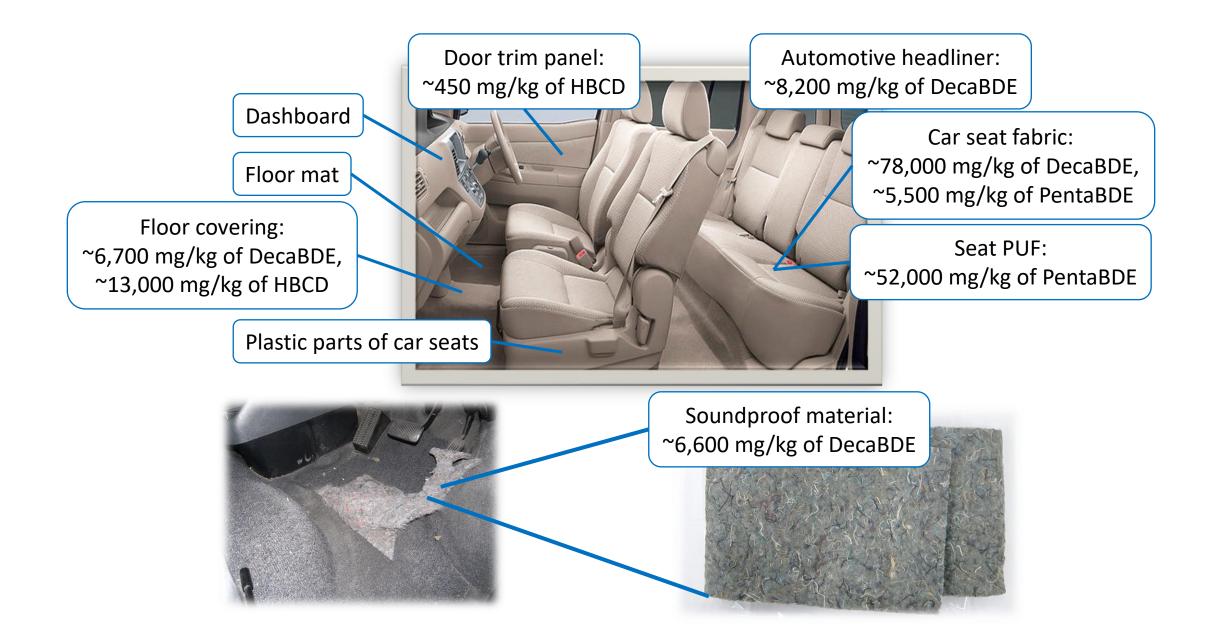
	Main use	Contents added to products	EU RoHS directive maximum concentration	Low POP content for waste under the Basel Convention	
PentaBDE	Polyurethane foam, printed circuit board		1,000 mg/kg as a sum	[50 mg/kg] or [500 mg/kg] or [1,000 mg/kg] as a sum of POP-	
OctaBDE	Electronic casing	Up to 40% by weight			
DecaBDE	Electronic casing, textile coating, building insulation	(1% = 10,000 mg/kg)	(mono- to decaBDE)	BDEs	
HBCD	Textile, building insulation	Up to 5% by weight in textile, ~0.5% in EPS, ~5% in XPS	Not applicable	100 mg/kg [or 500 mg/kg] or 1,000 mg/kg	

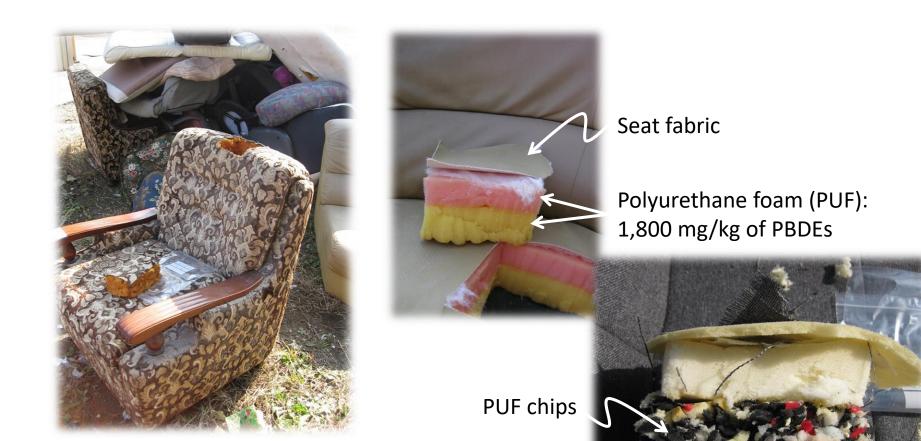
- → Chemical analysis is essential to identify products and wastes containing POPs.
- → POP contents in product and wastes >>> atmosphere, breast milk

PBDE and HBCD in Plastic Products and Wastes

CRT TV casing: ~ 120,000 mg/kg of PBDE

Flame-retarded curtains:


- 22,000–43,000 mg/kg of HBCD
- 120,000 mg/kg of PBDEs


Building insulation foam:

- Expanded polystyrene (EPS): ~5,500 mg/kg of HBCD
- Extruded polystyrene (XPS): ~44,000 mg/kg of HBCD

PBDE and HBCD Found in End-of Life Vehicles

Sofas and Couches

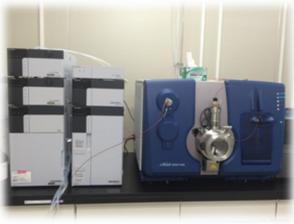
Infant and Child Car Seats

Seat fabric: ~920 mg/kg of PBDE

Polyurethane foam: ~23,000 mg/kg of PentaBDE, ~43,000 mg/kg of DecaBDE

> EPS: 3,800–10,000 mg/kg of HBCD

A simplified method to analyze POP-BFRs in Plastic


Eguchi A., Matsukami H., Takahashi A., Kajiwara N. (2021) Simultaneous determination of polybrominated diphenyl ethers and hexabromocyclododecane in plastic waste by short-column gas-chromatography-quadrupole mass spectrometry and electron capture detector. *Chemosphere* 277, 130301.

Instruments Used for PBDE and HBCD Analysis

PBDE[50 or 500 or 1,000 as a sum]GC-HRMS, GC-MS/MS etc.Simultaneous determination by GC-qMS and GC-ECDHBCD100 or 1,000LC-MS/MS (isomer specific analysis)General-purpose ed		Tentative Basel LPC (mg/kg)	Conventional precise method	Proposed simplified method
HBCD 100 or 1,000 (PBDE	•		Simultaneous determination by
not state-of-th	HBCD	100 or 1,000	•	General-purpose

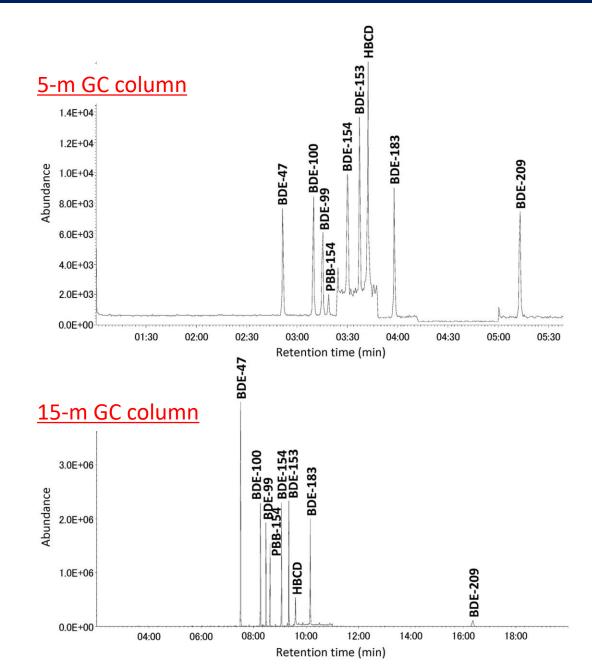
GC-high resolution mass spectrometry

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

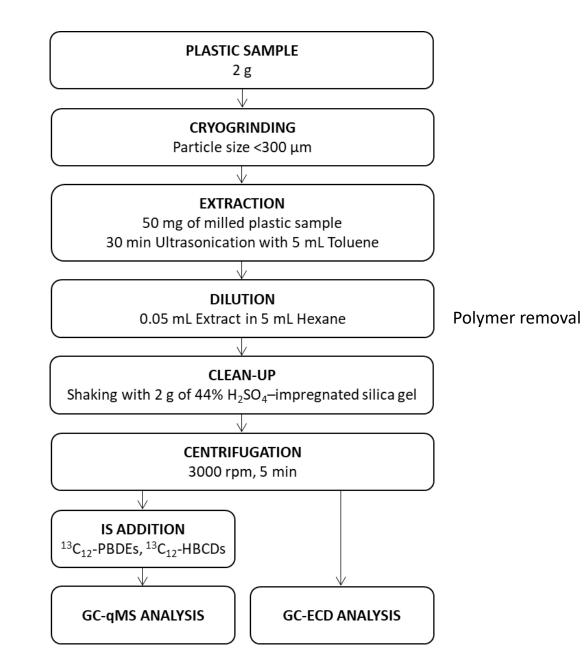
A Rapid Simplified Method for POP-BFRs in Plastic Waste

	Tentative Basel LPC (mg/kg)	Conventional precise method	Proposed simplified method
PBDE	[50 or 500 or 1,000 as a sum]	GC–HRMS, GC–MS/MS etc.	Simultaneous determination by
HBCD	100 or 1,000	LC–MS/MS (isomer specific analysis)	GC-qMS and GC-ECD General-purpose equipmer
	not state-of-the-art		

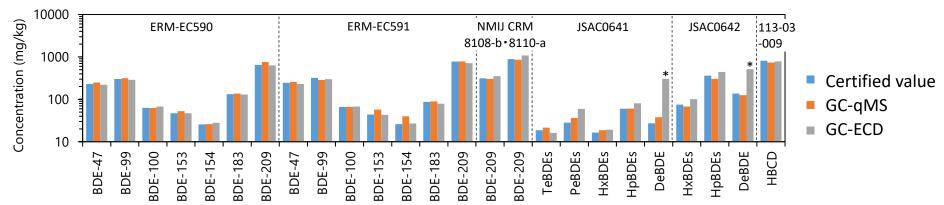
• A custom shortened DB-5HT GC column (5 m x 0.25 mm i.d., 0.10 μm, cut from a 15-m column)



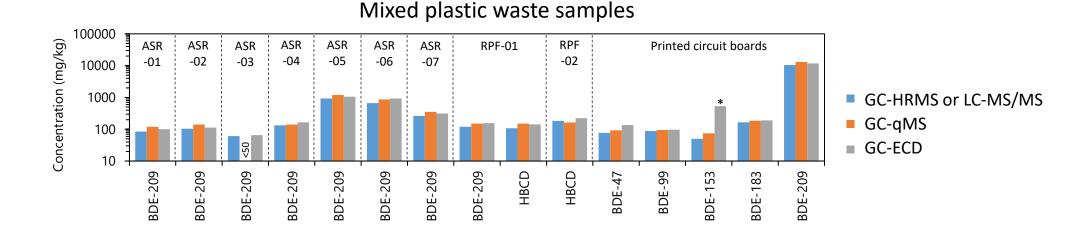
- ✓ Cost reduction
- ✓ Reduction of GC analysis time
- ✓ Reduced impact of pyrolysis



Comparison of GC Chromatograms of POP-BFR Standard Mix.



- Major isomers well separated
- 10 min faster retention time of BDE 209
- Increased sensitivity of BDE 209
 - ➔ 5-m GC column method can be used for POP-BFR screening


Analytical Procedure for POP-BFR Analysis in Plastics

Validation of the Simplified Method

Certified reference materials

- → Within the 30% error ranges of the certified values
- → Can be used as a simplified method specifically for plastics

Chemosphere 277 (2021) 130301

Simultaneous determination of polybrominated diphenyl ethers and hexabromocyclododecane in plastic waste by short-column gas-chromatography-quadrupole mass spectrometry and electron capture detector

Akifumi Eguchi ^{a, *}, Hidenori Matsukami ^b, Atsushi Takahashi ^c, Natsuko Kajiwara ^b

^b Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan

^c IDEA Consultants Inc., 1334-5 Riemon, Yaizu, 421-0212, Japan

Check for updates

^a Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

Inter-lab Study for POP-BFRs in Plastic Waste

Inter-lab Study for POP-BFRs in Plastic Waste

	1 st Round in 2019	2 nd Round in 2020			
	Standard solutions and plastic extracts	CRT TV casing	Car fabric	Insulation boards (EPS and XPS)	Extracts of automobile shredder residue (ASR)
Test samples					
Target compounds	PBDE and HBCD	РВ	DE	HBCD	PBDE and HBCD
Participants	35 laboratories at universities, research institutes and private companies in Belgium, China, Germany, India, The Netherlands, UK, US, Kuwait and Japan	26 laboratories at universities, research institutes and private companies in Belgium, China, Germany, India, South Korea, the Netherlands, USA and Japan			

The following two methods were used:

(1) The usual <u>in-house methods</u> used by each laboratory

(2) <u>A simplified GC-qMS or GC-ECD method</u> we propose (Eguchi et al., 2021)