IPCP Webinar Series: POPs in plastic and monitoring approaches Part II: Sampling of plastics from major sectors to monitor POPs in plastics, 19 May 2023

Screening of brominated and chlorinated additives in plastic pellets

<u>Natsuko Kajiwara</u>

Material Cycles Division,

National Institute for Environmental Studies (NIES), Japan

Content

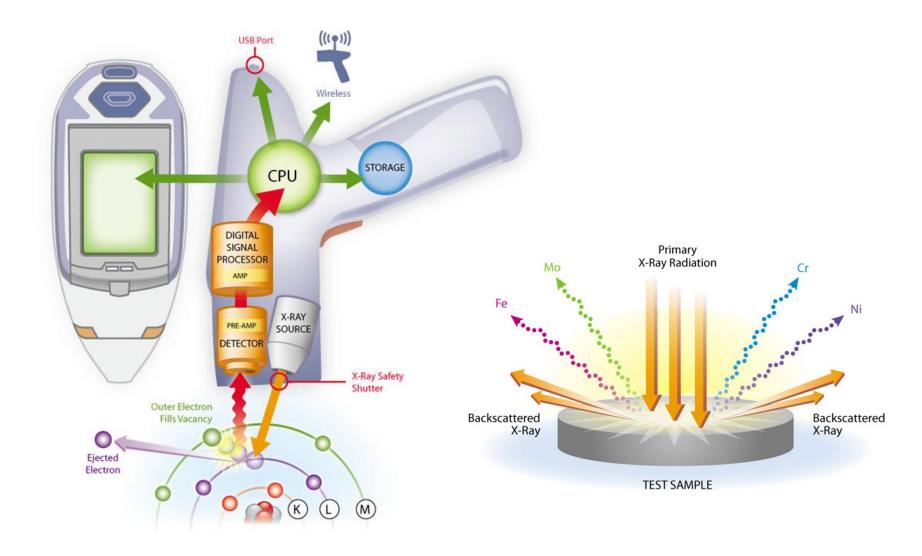
1. Introduction

- 2. XRF screening of bromine (Br) and chlorine (Cl) contents
- 3. Some case studies applied to plastic samples
- 4. Ongoing project on recycled plastic pellets

Stockholm Convention on Persistent Organic Pollutants (POPs)

	2001	COP4 2009	COP5 2011	COP6 2013	COP7 2015	COP8 2017	COP9 2019	COP10 2022	COP11 2023
Pesticides	Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Mirex, Toxaphene	Chlordecone, HCH, lindane	Endosulfan		РСР			ly added POPs on are <u>plastic a</u>	
Fluorinated compounds		PFOS PFOSF	Brom	ninated addi	tives		PFOA	PFHxS	
Brominated flame		HBB POP-BDEs		HBCD		DecaBDE			
retardants							Chlorinate	ed additives	
Chlorinated compounds	HCB PCB	РеСВ			HCBD PCN PCP	SCCP			Dechlorane Plus
UV stabilizer									UV-328
Unintentional POPs	HCB PCB PCDD/DF	PeCB			PCN	HCBD			

POPs Used as Plastic Additives


	Main use	Listing year to the Stockholm Convention	Contents added to products	Low POP content for waste under the Basel Convention	
PentaBDE	Polyurethane foam, printed circuit board	2009 (tetra- to heptaBDEs)			
OctaBDE	Electronic casing		Up to 40% by weight	[50 mg/kg] or [500 mg/kg] or	
DecaBDE	Electronic casing, textile coating, building insulation	2017 (decaBDE)	(1% = 10,000 mg/kg)	[1,000 mg/kg] as a sum	
HBCD	Textile, building insulation	2013	Up to 5% by weight in textile, ~0.5% in EPS, ~5% in XPS	100 mg/kg [or 500 mg/kg] or 1,000 mg/kg	
SCCP	PVC, rubber, lubricant, <i>etc</i> .	2017	Up to 20% by weight	[100 mg/kg] or [1,500 mg/kg] or [10,000 mg/kg]	
Dechlorane Plus	EEE, vehicles, building materials, <i>etc</i> .	2023	Up to 40% by weight	TBD	

→ Br or Cl contents as indicators of the presence of POPs in plastic

→ Quick screening of Br and Cl by using a handheld X-ray fluorescence (XRF) analyzer

XRF screening of bromine (Br) and chlorine (Cl) contents

How Does XRF Work?

Notes on XRF Measurements

- 1. The sample should completely cover the measurement window.
- 2. The sample should be homogeneous.
- 3. The sample should be thick enough that additional material will not affect the result. For plastic samples, the thickness should at least 1.5 cm. Or the area to be measured should not be in contact with any other materials.
- 4. XRF analysis is limited to the detection of elements including Br and Cl in the test samples, <u>without any capacity to identify the type of additives</u>.

a non-destructive method

Validations of Element Contents (mg/kg) in Polymer Reference Samples by a Handheld XRF

	PE-	Low	PE-I	High	PVC-Low		PVC-High	
Element	Certified value	Analytical value*	Certified value	Analytical value*	Certified value	Analytical value*	Certified value	Analytical value*
Cr	399	400	1,000	1,100	400	300	1,000	1,100
Br	499	500	1,100	1,000	500	400	1,100	1,000
Cd	101	<lod< td=""><td>300</td><td>200</td><td>100</td><td>100</td><td>300</td><td>300</td></lod<>	300	200	100	100	300	300
Hg	200	100	1,099	800	200	100	1,200	700
Pb	399	300	1,199	900	400	300	1,200	900

* Concentrations obtained by the handheld XRF analysis

PE: Polyethylene; PVC: Polyvinylchloride

XRF Instrument

Innov-X Systems alpha6500 RoHS/WEEE mode Analytical time: 30 sec

Kajiwara et al (2011) J. Environ. Chem. 21, 13–20.

Br Contents in BDE 209 and HBCD

	Molecular structure	Molecular formula	Molecular weight (g/mol)	Br content
BDE 209 (Decabromodiphenyl ether)	$\underset{Br}{\overset{Br}{\longrightarrow}}\underset{Br}{\overset{Br}{\overset{Br}{\longrightarrow}}\underset{Br}{\overset{Br}{\overset{Br}{\longrightarrow}}\underset{Br}{\overset$	$C_{12}Br_{10}O$	959.2	83% = (79.9 x 10 / 959.2) x 100
HBCD (Hexabromocyclododecane)	Br Br Br Br	$C_{12}H_{18}Br_6$	641.7	75% = (79.9 x 6 / 641.7) x 100

- ➔ For example, if the Br concentration measured by XRF was 1,000 mg/kg by weight, all derived from BDE 209 or HBCD, it corresponds to 1,200 mg/kg of BDE 209 and 1,300 mg/kg of HBCD, respectively.
- → Conversely, for example, to ensure that PBDE and HBCD concentrations are below 1,000 mg/kg, Br concentrations should be below 830 mg/kg and 750 mg/kg, respectively.

Major Brominated Flame Retardants other than PBDE and HBCD

- Tetrabromobisphenol A (TBBPA) (CAS no. 79-94-7)
- Brominated bisphenol-A type epoxy resin (CAS no. 68928-70-1)
- TBBPA carbonate oligomer (CAS no. 71342-77-3)
- TBBPA bis(dibromopropyl ether) (CAS no. 21850-44-2)
- TBBPA-bis-(allyl ether) (CAS no. 25327-89-3)
- 1,2-Bis(2,3,4,5,6-pentabromophenyl)ethane (DBDPE) (CAS no. 84852-53-9)
- 1,2-Bis(2,4,6-tribromophenoxy)ethane (CAS no. 37853-59-1)
- 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine (CAS no. 25713-60-4)
- Poly(2,6-dibromophenol oxide) (CAS no. 69882-11-7)
- Brominated polystyrene (CAS no. 57137-10-7)
- 1,2-Bis(tetrabromophthalimido) ethane (CAS no. 32588-76-4)
- Hexabromobenzene (CAS no. 87-82-1)
- Pentabromobenzyl Acrylate (CAS no. 59447-55-1)
- Poly(pentabromobenzyl acrylate) (CAS no. 59447-57-3)
- Octabromotrimethylphenylindan (CAS no. 155613-93-7)
- 1,2,3,4,5-pentabromobenzene (CAS no. 608-90-2)
- Pentabromophenol (CAS no. 608-71-9)

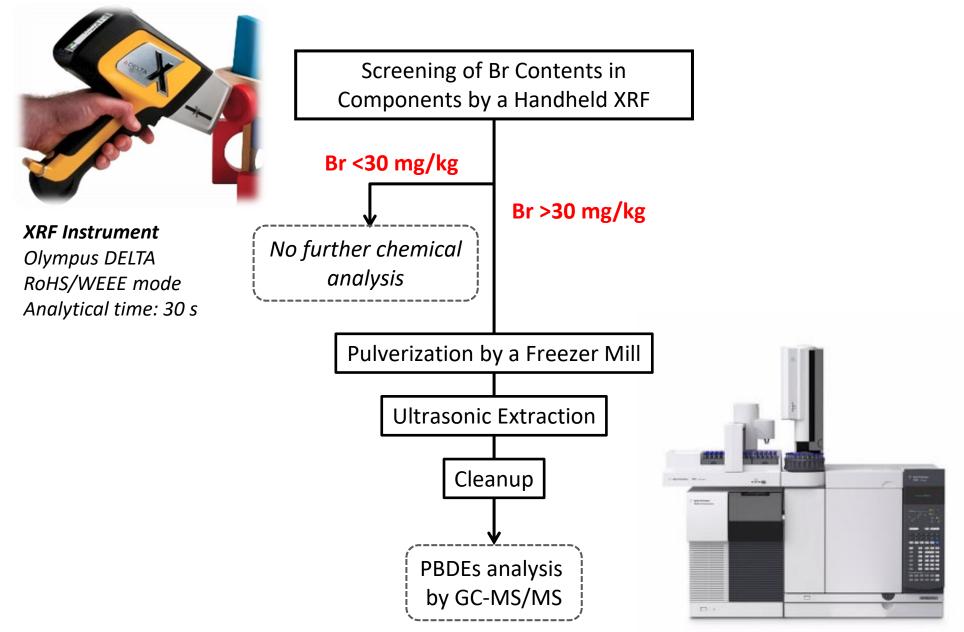
And many more...

Br content is only an indicator of the presence of brominated compounds, not POP-BFRs

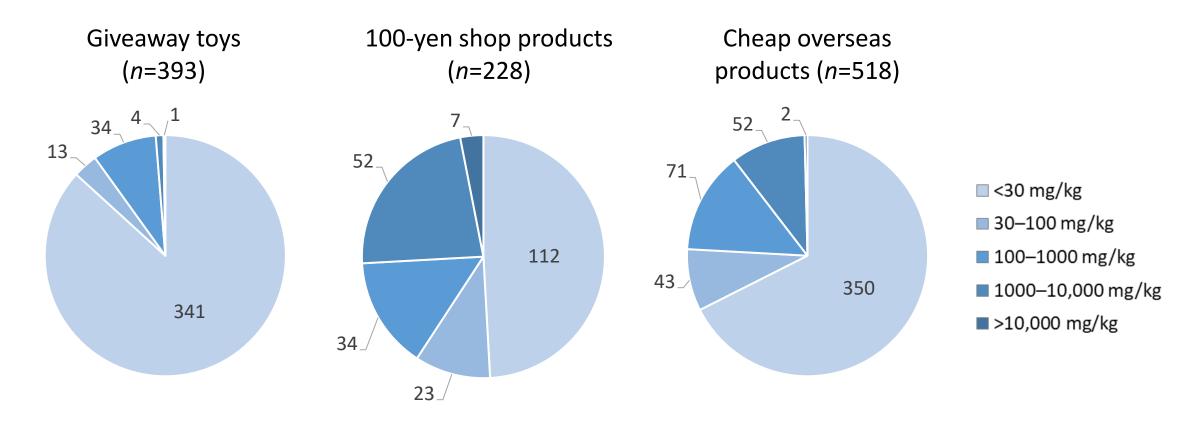
Cl as an Indicator for Chlorinated Additives?

	Main use	Contents added to products	Low POP content for waste under the Basel Convention	
SCCP	PVC, rubber, lubricant, <i>etc</i> .	Up to 20% by weight	[100 mg/kg] or [1,500 mg/kg] or [10,000 mg/kg]	
Dechlorane Plus	EEE, vehicles, building materials, <i>etc.</i>	Up to 40% by weight	TBD	

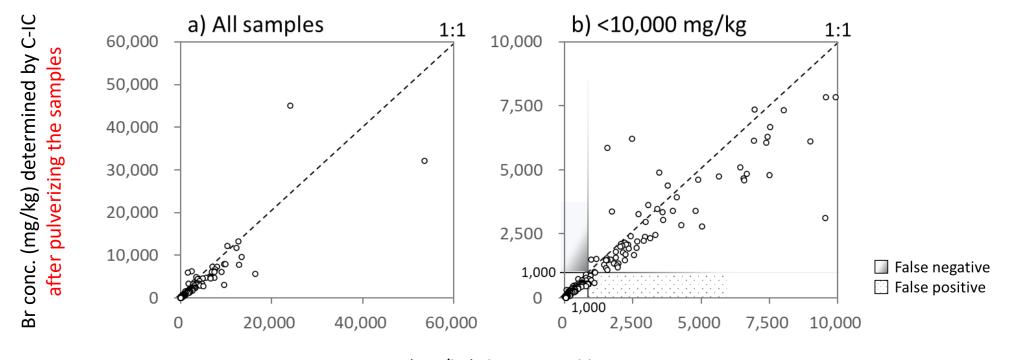
- 1. The detection limit of Cl concentration in XRF measurements is several orders of magnitude higher than that of Br.
- 2. Since PVC originally contains a large amount of Cl (up to 70% by weight), it is difficult to determine the presence/absence of SCCP or Dechlorane Plus based on the XRF screening of Cl concentration.
 - XRF screening may be effective for polymer products that do not originally contain Cl.
 - Need to accumulate case studies of such cases in the future.


Some case studies applied to plastic samples

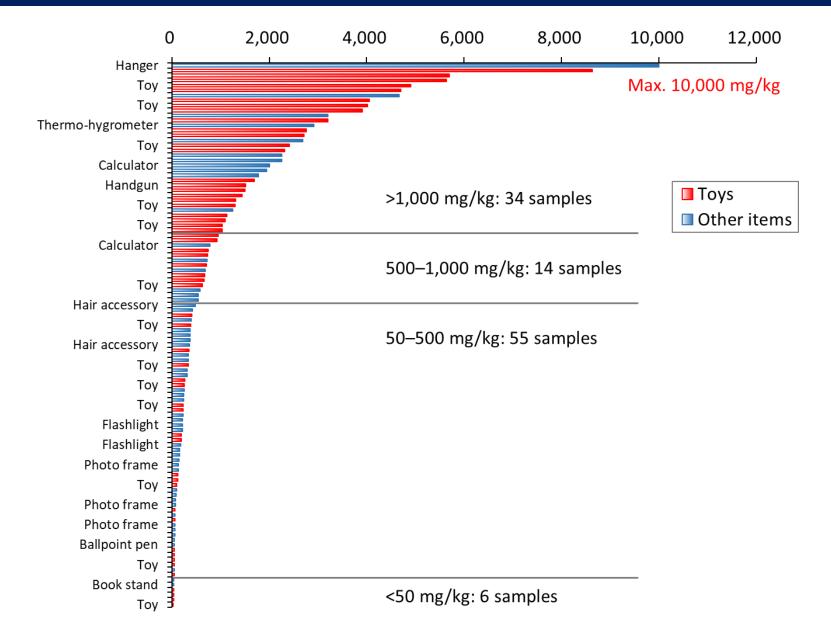
Recycling PBDEs to New Products including Toys and Consumer Products


Category	No of Items	No of Components
Giveaway toys	187	393
100-yen shop products	92	228
Cheap plastic products purchased overseas	261	518
Total	540	1,139

Methods



Br Contents in Plastic Components (*n* = 1139)


- → 219 components with >30 mg/kg Br were pulverized (20% of the original samples):
 - 1. <u>PBDE analysis by GC/MS</u> for confirmation
 - 2. More accurate determination of <u>Br conc. by combustion ion chromatography (C-IC)</u>

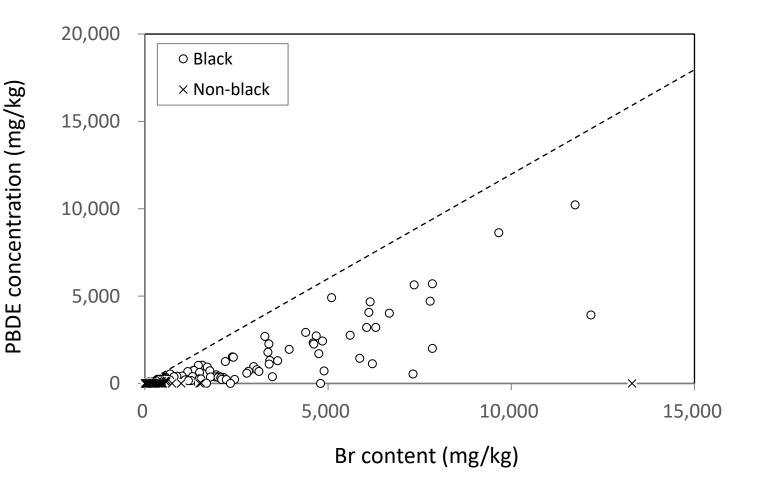
Comparison of Br concentrations Determined by XRF or C-IC

Br conc. (mg/kg) determined by XRF before pulverizing the samples

PBDE Contents (mg/kg) in Plastic Components (n = 109)

Br Content vs. PBDE Concentrations in Consumer Products

10,000 mg/kg in a clothes hanger



4,700 mg/kg in a flashlight

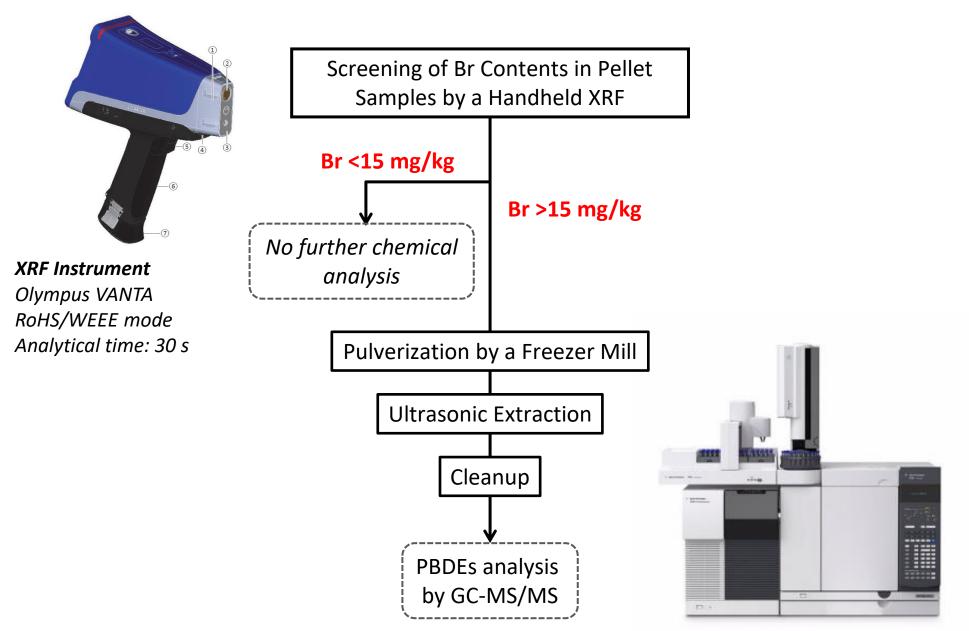
1,500 mg/kg in a toy gun

✤ Large contribution from brominated flame retardants other than PBDEs

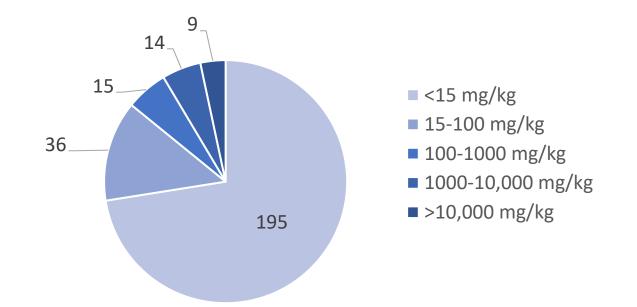
Ongoing project on recycled plastic pellets

Recycled Plastic Pellets from Various Countries

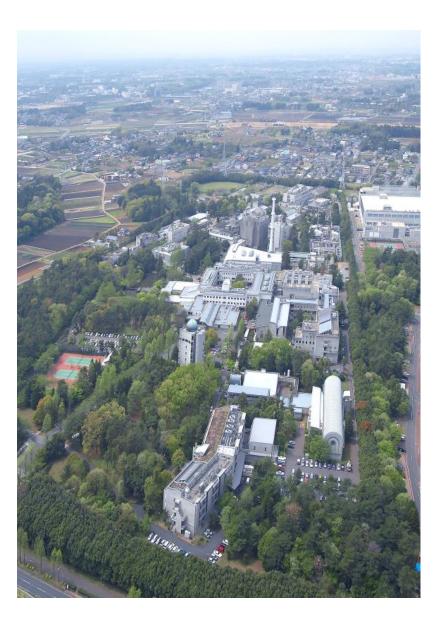
HDPE: High density polyethylene; LDPE: Low density polyethylene; PP: Polypropylene; PS: Polystyrene; ABS: Acrylonitrile butadiene styrene


Variation of Br Concentrations (mg/kg) in Plastic Pellets

	n	Average	Range	CV (%)
Pellet A	5	110,000	110,000–110,000	1.2
Pellet B	6	84	77–89	5.5
Pellet C	6	30	27–32	5.9



→ Br concentration in pellet sample can be considered homogeneous


Methods

Br Contents in Pellet Samples (*n* = 269)

→ 74 pellet samples with >15 mg/kg Br (28% of the original samples) were selected for further PBDE analysis

Thank you very much for your kind attention!

Natsuko Kajiwara kajiwara.natsuko@nies.go.jp

