IPCP Webinar Series: POPs in plastic and monitoring approaches Part I: Understanding POPs in plastics, 25 April 2023

Recycling PBDEs to New Products including Toys and Consumer Products

Natsuko Kajiwara

Material Cycles Division,

National Institute for Environmental Studies (NIES), Japan

Today's Presentation

- 1. Introduction
- 2. Current situation of waste containing PBDEs in Japan
- 3. Unintentional contamination of PBDEs in consumer products

Stockholm Convention on Persistent Organic Pollutants (POPs)

	2001	COP4 2009	COP5 2011	COP6 2013	COP7 2015	COP8 2017	COP9 2019	COP10 2022
Pesticides	Aldrin, Chlordane,	Chlordecone, HCH,	Endosulfan		РСР		Dicofol	
	DDT, Dieldrin, Endrin, Heptachlor, Mirex, Toxaphene	lindane			•	Listing of POP wast	new cher e manage	nicals ement
Fluorinated compounds		PFOS PFOSF	Brominate	d Flame Re	etardants		PFOA	PFHxS
Brominated flame		HBB POP-BDEs		HBCD		DecaBDE		
retardants								
Chlorinated compounds	HCB PCB	PeCB			HCBD PCN PCP	SCCP		
Unintentional POPs	HCB PCB PCDD/DF	PeCB			PCN	HCBD		

→ Most of the newly added POPs for global elimination are plastic additives

International Regulations on PBDEs

	Main use	Listing year to the Stockholm Convention	Recycling exemption	Low POP content for waste under the Basel Convention (Basel LPC)	EU RoHS directive maximum concentration value (RoHS MCV)	
PentaBDE	Polyurethane foam, printed circuit board	2009 (tetra- to	Yes	[50 mg/kg as a sum] or [500 mg/kg as a sum] or [1 000	1,000 mg/kg as a	
OctaBDE	Electronic casing	heptaBDEs)				
DecaBDE	Electronic casing, textile coating, building insulation	2017 (decaBDE)	No	mg/kg as a sum]	decaBDE)	

Wastes containing POPs higher than Basel LPC

- Should be destroyed or irreversibly transformed
- → No material recycling

PBDE Consumption in Japan

Material recycling (Resources utilization)
Proper disposal (POP wastes)

Home Appliances Regulated by Recycling Law in Japan

		Target rates for material recycling	Components that may contain DecaBDE	DecaBDE use period
Air conditioners		>80%	Electric box	Until 2005?
Televisions	CRT	>55%	Casing, electric box	Until 2004?
	Flat-panel	>74%	N/A	-
Refrigerators & freezers		>70%	Electric box	Until 2004?
Washing machines & cloth dryers		>82%	Direct drive motor	Until 2004?

There are 47 WEEE recycling facilities in Japan treating about 1,200,000 units/year.

The amount of decaBDE consumption will be large in CRT casing.

Example of TV Casings Recycling Process in Japan

International Circulation of End-of-life Products containing PBDE

- ✓ E-waste plastics and their recyclates are not always consumed in Japan but are exported to other Asian countries.
 - ➔ We conducted a survey to understand the current status of the international circulation of PBDE-containing waste plastics.

Plastic Samples Investigated

Category	No of Items	No of Components
Giveaway toys	187	393
100-yen shop products	92	228
Cheap plastic products purchased overseas	261	518
Total	540	1,139

Examples of 100-yen Shop Products

Examples of Plastic Products Purchased Overseas

Methods

Br Contents in Plastic Components (*n* = 1139)

PBDE Contents (mg/kg) in Plastic Components (n = 109)

PBDEs Found in Toys

r 200 mg/kg in a toy car 740 mg/kg in a Reversi

2,800 mg/kg in a toy gun

3,900 mg/kg in accessory beads toys

PBDEs Found in Other Items

10,000 mg/kg in a clothes hanger

4,700 mg/kg in a flashlight

380 mg/kg in a water pipe joint

2,000 mg/kg in a calculator

490 mg/kg in hair accessories

What Can We Do Now?

- A step closer to the POP-free environment, we need more communication with policy makers and recycling industry.
- Support for capacity building of POP analysis in circulating resources in developing countries.

Acknowledgement

Special thanks to:

- The Japanese Society for Environmental Chemistry (JEC) & Prof. Takeshi Nakano (Osaka University, Japan)
- Drs. Ittipol Pawarmart (Pollution Control Department, Thailand), Ruchaya Boonyatumanond (Environmental Research and Training Center, Thailand), Karri Ramu Reddy, Nagarjuna Avula (National Centre for Coastal Research, Ministry of Earth Sciences, India), Vladimir Beskoski, Srdjan Miletic, Marija Ljesevic (University of Belgrade, Serbia), James C.W. Lam (The Education University of Hong Kong), Gilbert Kuepouo (CREPD- Research and Education Center for Development, Cameroon), Rohana Chandrajith (University of Peradeniya, Sri Lanka), Phan Quang Thang (Institute of Environmental Technology, Vietnam Academy of Science and Technology, Vietnam), Nicholas Chia Wei Ng (Universiti Malaysia Terengganu, Malaysia), Elena Okada (National Scientific and Technical Research Council, Argentina), Hyeonseo Cho (Chonnam National University, Korea), Ming-Min Yang, Wen-Che Hou, Wen-Ting Shih, Wen-Chi Yeh (National Cheng Kung University, Taiwan), Ei Ei Pan Nu Yi (University of Medicine 1, Yangon, Myanmar), Nurlatifah (Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia), Paromita Chakraborty (SRM Institute of Science and Technology, India), Govindan Malarvannan, Prof. Adrian Covaci (Antwerp University, Belgium) & Mr. Elvis Dsouza (EDPC Polymer industries, India) for kindly providing samples
- Ms. Akiko Echigo & Mr. Humiaki Kato (NIES) for the technical assistance

Research funds:

- Environment Research and Technology Development Fund (JPMEERF20193001) of the Environmental Restoration and Conservation Agency, Japan
- Grants-in-Aid for Scientific Research JSPS KAKENHI (JP15K16141) of Japan Society for the Promotion of Science

Thank you very much for your kind attention!

Natsuko Kajiwara kajiwara.natsuko@nies.go.jp

Recycling plastics containing decabromodiphenyl ether into new consumer products including children's toys purchased in Japan and seventeen other countries^{\star}

Natsuko Kajiwara^{a,*}, Hidenori Matsukami^a, Govindan Malarvannan^b, Paromita Chakraborty^c, Adrian Covaci^b, Hidetaka Takigami^{a,†}

^a Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan

^b Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium

^c Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India

HIGHLIGHTS

GRAPHICAL ABSTRACT

- 540 plastic products (1139 components) purchased in 18 countries were investigated.
- About 20% of all samples had bromine \geq 30 mg kg⁻¹ and 10% of all contained PBDEs.
- PBDEs in e-waste plastics transfer to products to which humans have daily exposure.
- High PBDE contents were found in black-colored or painted plastic products.
- Most of bromine-positive samples contained non-PBDE flame retardants.

